Common Programming Error 10.5

ﬁ Not providing a copy constructor and overloaded
assignment operator for a class when objects of that class
contain pointers to dynamically allocated memory is a
potential logic error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

C++11: Deleting Unwanted Member Functions from Your
Class

* Prior to C++11, you could prevent class objects from being
copied or aSS/gnea’ by declaring as private the class’s copy
constructor and overloaded assignment operator.

« As of C++11, you can simply gelete these functions from
your class.

 Todosoinclass Array, replace the prototypes in lines 15
and 19 of Fig. 10.10 with:
Array(const Array &) = delete;
const Array &operator=(const Array &) = delete;

* Though you can delete any member function, it’s most
commonly used with member functions that the compiler can
auto-generate—the default constructor, copy constructor,
assignment operator, and in C++ 11, the move constructor and
move assignment operator.

10.10 Case Study: Array Class (cont.)

Overloaded Equality and Inequality Operators

* Line 20 of Fig. 10.10 declares the overloaded equality
operator (==) for the class.

« When the compiler sees the expression 1ntegersl ==
1ntegers?2 in line 55 of Fig. 10.9, the compiler invokes
member function operator== with the call

 1ntegersl.operator==(integers2)

* Member function operator== (defined in Fig. 10.11,
lines 66—76) immediately returns Talse if the s1ze
members of the Arrays are not equal.

* Otherwise, operator== compares each pair of elements.
* If they’re all equal, the function returns true.

* The first pair of elements to differ causes the function to
return false immediately.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Lines 23-26 Fig. 10.9 define the overloaded inequality
operator (! =) for the class.

Member function operator ! = uses the overloaded
operator== function to deter-mine whether one Array
IS equal to another, then returns the opposite of that resulit.
Writing operator ! = in this manner enables you to reuse
operator==, which reduces the amount of code that must
be written in the class.

Also, the full function definition for operator!=isin the
Array header.
— Allows the compiler to inline the definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Overloaded Subscript Operators

 Lines 29 and 32 of Fig. 10.10 declare two overloaded
subscript operators (defined in Fig. 10.11 in lines 80—
87 and 91-98).

* When the compiler sees the expression
integers1[5] (Fig. 10.9, line 59[), it invokes the
appropriate overloaded operator [] member
function by generating the call

 integersl.operator[](5)

* The compiler creates a call to the const version of
operator[] (Fig. 10.11, lines 91-98) when the
subscript operator is used on a const Array object.

10.10 Case Study: Array Class (cont.)

Each definition of operator[] determines whether
the subscript it receives as an argument Is in range.

If 1t 1sn’t, each function prints an error message and
terminates the program with a call to function ex1 t.

If the subscript Is In range, the non-const version of
operator[] returns the appropriate Array
element as a reference so that it may be used as a
modifiable /value.

If the subscript Is In range, the const version of
operator[] returns a copy of the appropriate
element of the Array.

10.10 Case Study: Array Class (cont.)

C++11. Managing Dynamically Allocated Memory
with unique_ptr
* In this case study, class Array’s destructor used
delete [] toreturnthe dynamically allocated
built-in array to the free store.
* As you recall, C++11 enables you to use

unique_ptr to ensure that this dynamically
allocated memory is deleted when the Array object

goes out of scope.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

C++11: Passing a List Initializer to a Constructor

 In Fig. 7.4, we showed how to Initialize an array
object with a comma-separated list of initializers in
braces, as In
array< int, 5 >n=4{ 32, 27, 64, 18, 95 };
« C++11 now allows any object to be initialized with a
list initializer and that the preceding statement can

also be written without the =, as In
array< int, 5 > n{ 32, 27, 64, 18, 95 };

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

C++11 also allows you to use list initializers when
you declare objects of your own classes.

For example, you can now provide an Array
constructor that would enabled the following
declarations:

Array integers = { 1, 2, 3, 4, 5 };
or

Array integers{ 1, 2, 3, 4, 5 };
each of which creates an Array object with five
elements containing the integers from 1 to 5.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

To support list initialization, you can define a
constructor that receives an obyect of the class
template Tnitializer_1list. Forclass Array,
you’d include the <initializer_11st> header.

Then, you’d define a constructor with the first line:
Array::Array(1nitializer_list< int > list)

You can determine the number of elements in the list
parameter by calling its size member function.

To obtain each initializer and copy it into the Array
object’s dynamically allocated built-In array, you can
use a range-based for as follows:
size_t 1 = 0;
for (int item : Tist)
ptr[1++] = 1tem;

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.11 Operators as Member vs. Non-
Member Functions

Whether an operator function is implemented as a /member function or
as a non-member function, the operator is still used the same way In
expressions.

When an operator function is implemented as a member function, the
leftmost (or only) operand must be an object (or a reference to an
object) of the operator’s class.

If the left operand /must be an object of a different class or a
fundamental type, this operator function mustbe implemented as a non-
member function (as we did in Section 10.5 when overloading << and
>> as the stream insertion and extraction operators, respectively).

A non-member operator function can be made a friend of a class if
that function must access private or protected members of that
class directly.

Operator member functions of a specific class are called only when the
left operand of a binary operator is specifically an object of that class,
or when the single operand of a unary operator is an object of that class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.11 Operators as Member vs. Non-
Member Functions (cont.)

* You might choose a non-member function to

overload an operator to enable the operator to
be commutative.

 The operator+ function that deals with the

HugeInt on the left, can still be a member
function.

* The non-member function simply swaps Its
arguments and calls the member function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types

Sometimes all the operations “stay within a type.” For
example, adding an 1nt to an 1nt produces an 1nt.

It’s often necessary, however, to convert data of one type to
data of another type.

The compiler knows how to perform certain conversions
among fundamental types.

You can use cast operators to force conversions among
fundamental types.

The compiler cannot know in advance how to convert
among user-defined types, and between user-defined types
and fundamental types, so you must specify how to do this.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types (cont.)

* Such conversions can be performed with
conversion constructors—constructors that can
be called with a single argument (we’ll refer to
these as s/ingle-argument constructors).

* Such constructors can turn objects of other
types (including fundamental types) into
objects of a particular class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types (cont.)

Conversion Operators

* Aconversion operator (also called a cast operator) can be used
to convert an object of one class to another type.

» Such a conversion operator must be a non-static member
function.

 The function prototype

« MyClass::operator char *() const;

» declares an overloaded cast operator function for converting an
object of class MyClass into a temporary char * object.

* The operator function Is declared const because it does 70t
modify the original object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

