
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)
C++11: Deleting Unwanted Member Functions from Your
Class

• Prior to C++11, you could prevent class objects from being
copied or assigned by declaring as private the class’s copy
constructor and overloaded assignment operator.

• As of C++11, you can simply delete these functions from
your class.

• To do so in class Array, replace the prototypes in lines 15
and 19 of Fig. 10.10 with:
Array(const Array &) = delete;
const Array &operator=(const Array &) = delete;

• Though you can delete any member function, it’s most
commonly used with member functions that the compiler can
auto-generate—the default constructor, copy constructor,
assignment operator, and in C++ 11, the move constructor and
move assignment operator.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Overloaded Equality and Inequality Operators

• Line 20 of Fig. 10.10 declares the overloaded equality
operator (==) for the class.

• When the compiler sees the expression integers1 ==
integers2 in line 55 of Fig. 10.9, the compiler invokes
member function operator== with the call

• integers1.operator==(integers2)

• Member function operator== (defined in Fig. 10.11,
lines 66–76) immediately returns false if the size
members of the Arrays are not equal.

• Otherwise, operator== compares each pair of elements.

• If they’re all equal, the function returns true.

• The first pair of elements to differ causes the function to
return false immediately.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

• Lines 23–26 Fig. 10.9 define the overloaded inequality

operator (!=) for the class.

• Member function operator!= uses the overloaded

operator== function to deter-mine whether one Array

is equal to another, then returns the opposite of that result.

• Writing operator!= in this manner enables you to reuse

operator==, which reduces the amount of code that must

be written in the class.

• Also, the full function definition for operator!= is in the

Array header.

– Allows the compiler to inline the definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

Overloaded Subscript Operators

• Lines 29 and 32 of Fig. 10.10 declare two overloaded
subscript operators (defined in Fig. 10.11 in lines 80–
87 and 91–98).

• When the compiler sees the expression
integers1[5] (Fig. 10.9, line 59), it invokes the
appropriate overloaded operator[] member
function by generating the call

• integers1.operator[](5)

• The compiler creates a call to the const version of
operator[] (Fig. 10.11, lines 91–98) when the
subscript operator is used on a const Array object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

• Each definition of operator[] determines whether
the subscript it receives as an argument is in range.

• If it isn’t, each function prints an error message and
terminates the program with a call to function exit.

• If the subscript is in range, the non-const version of
operator[] returns the appropriate Array
element as a reference so that it may be used as a
modifiable lvalue.

• If the subscript is in range, the const version of
operator[] returns a copy of the appropriate
element of the Array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

C++11: Managing Dynamically Allocated Memory
with unique_ptr
• In this case study, class Array’s destructor used
delete [] to return the dynamically allocated
built-in array to the free store.

• As you recall, C++11 enables you to use
unique_ptr to ensure that this dynamically
allocated memory is deleted when the Array object
goes out of scope.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

C++11: Passing a List Initializer to a Constructor
• In Fig. 7.4, we showed how to initialize an array

object with a comma-separated list of initializers in
braces, as in
array< int, 5 > n = { 32, 27, 64, 18, 95 };

• C++11 now allows any object to be initialized with a
list initializer and that the preceding statement can
also be written without the =, as in
array< int, 5 > n{ 32, 27, 64, 18, 95 };

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

• C++11 also allows you to use list initializers when
you declare objects of your own classes.

• For example, you can now provide an Array
constructor that would enabled the following
declarations:
Array integers = { 1, 2, 3, 4, 5 };

• or
Array integers{ 1, 2, 3, 4, 5 };

• each of which creates an Array object with five
elements containing the integers from 1 to 5.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class (cont.)

• To support list initialization, you can define a
constructor that receives an object of the class
template initializer_list. For class Array,
you’d include the <initializer_list> header.

• Then, you’d define a constructor with the first line:
Array::Array(initializer_list< int > list)

• You can determine the number of elements in the list
parameter by calling its size member function.

• To obtain each initializer and copy it into the Array
object’s dynamically allocated built-in array, you can
use a range-based for as follows:
size_t i = 0;
for (int item : list)
 ptr[i++] = item;

 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.11 Operators as Member vs. Non-

Member Functions

• Whether an operator function is implemented as a member function or
as a non-member function, the operator is still used the same way in
expressions.

• When an operator function is implemented as a member function, the
leftmost (or only) operand must be an object (or a reference to an
object) of the operator’s class.

• If the left operand must be an object of a different class or a
fundamental type, this operator function must be implemented as a non-
member function (as we did in Section 10.5 when overloading << and
>> as the stream insertion and extraction operators, respectively).

• A non-member operator function can be made a friend of a class if
that function must access private or protected members of that
class directly.

• Operator member functions of a specific class are called only when the
left operand of a binary operator is specifically an object of that class,
or when the single operand of a unary operator is an object of that class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.11 Operators as Member vs. Non-

Member Functions (cont.)

• You might choose a non-member function to

overload an operator to enable the operator to

be commutative.

• The operator+ function that deals with the

HugeInt on the left, can still be a member

function.

• The non-member function simply swaps its

arguments and calls the member function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types

• Sometimes all the operations ―stay within a type.‖ For

example, adding an int to an int produces an int.

• It’s often necessary, however, to convert data of one type to

data of another type.

• The compiler knows how to perform certain conversions

among fundamental types.

• You can use cast operators to force conversions among

fundamental types.

• The compiler cannot know in advance how to convert

among user-defined types, and between user-defined types

and fundamental types, so you must specify how to do this.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types (cont.)

• Such conversions can be performed with
conversion constructors—constructors that can
be called with a single argument (we’ll refer to
these as single-argument constructors).

• Such constructors can turn objects of other
types (including fundamental types) into
objects of a particular class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.12 Converting Between Types (cont.)

Conversion Operators

• A conversion operator (also called a cast operator) can be used
to convert an object of one class to another type.

• Such a conversion operator must be a non-static member
function.

• The function prototype
• MyClass::operator char *() const;

• declares an overloaded cast operator function for converting an
object of class MyClass into a temporary char * object.

• The operator function is declared const because it does not
modify the original object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

